- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Yee, Ming-Ho (2)
-
Anderson, Carolyn Jane (1)
-
Cassano, Federico (1)
-
Chari, Guido (1)
-
Feldman, Molly Q (1)
-
Flückiger, Olivier (1)
-
Gouwar, John (1)
-
Greenberg, Michael (1)
-
Guha, Arjun (1)
-
Hain, Jakob (1)
-
Jangda, Abhinav (1)
-
Ječmen, Jan (1)
-
Nguyen, Daniel (1)
-
Nguyen, Sydney (1)
-
Phipps-Costin, Luna (1)
-
Pinckney, Donald (1)
-
Vitek, Jan (1)
-
Zi, Yangtian (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
- Filter by Editor
-
-
Michael Pradel (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Michael Pradel (Ed.)Large language models have demonstrated the ability to generate both natural language and programming language text. Although contemporary code generation models are trained on corpora with several programming languages, they are tested using benchmarks that are typically monolingual. The most widely used code generation benchmarks only target Python, so there is little quantitative evidence of how code generation models perform on other programming languages. We propose MultiPL-E, a system for translating unit test-driven code generation benchmarks to new languages. We create the first massively multilingual code generation benchmark by using MultiPL-E to translate two popular Python code generation benchmarks to 18 additional programming languages. We use MultiPL-E to extend the HumanEval benchmark and MBPP benchmark to 18 languages that encompass a range of programming paradigms and popularity. Using these new parallel benchmarks, we evaluate the multi-language performance of three state-of-the-art code generation models: Codex, CodeGen and InCoder. We find that Codex matches or even exceeds its performance on Python for several other languages. The range of programming languages represented in MultiPL-E allow us to explore the impact of language frequency and language features on model performance. Finally, the MultiPL-E approach of compiling code generation benchmarks to new programming languages is both scalable and extensible, making it straightforward to evaluate new models, benchmarks, and languages.more » « less
-
Flückiger, Olivier; Chari, Guido; Yee, Ming-Ho; Ječmen, Jan; Hain, Jakob; Vitek, Jan (, Proceedings of the ACM on Programming Languages)In order to generate efficient code, dynamic language compilers often need information, such as dynamic types, not readily available in the program source. Leveraging a mixture of static and dynamic information, these compilers speculate on the missing information. Within one compilation unit, they specialize the generated code to the previously observed behaviors, betting that past is prologue. When speculation fails, the execution must jump back to unoptimized code. In this paper, we propose an approach to further the specialization, by disentangling classes of behaviors into separate optimization units. With contextual dispatch, functions are versioned and each version is compiled under different assumptions. When a function is invoked, the implementation dispatches to a version optimized under assumptions matching the dynamic context of the call. As a proof-of-concept, we describe a compiler for the R language which uses this approach. Our implementation is, on average, 1.7× faster than the GNU R reference implementation. We evaluate contextual dispatch on a set of benchmarks and measure additional speedup, on top of traditional speculation with deoptimization techniques. In this setting contextual dispatch improves the performance of 18 out of 46 programs in our benchmark suite.more » « less
An official website of the United States government
